- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Coast, Onoriode (2)
-
Acebron, Kelvin T (1)
-
Ainsworth, Elizabeth (1)
-
Albert, Loren P (1)
-
Alonzo, Michael (1)
-
Anderson, Jeremiah (1)
-
Atkin, Owen K (1)
-
Atkin, OwenK (1)
-
Barbier, Nicolas (1)
-
Barnes, Mallory L (1)
-
Bernacchi, Carl J (1)
-
Besson, Ninon (1)
-
Bramley, Helen (1)
-
Burnett, Angela C (1)
-
Caplan, Joshua S (1)
-
Chave, Jérôme (1)
-
Cheesman, Alexander W (1)
-
Clocher, Ilona (1)
-
Coste, Sabrina (1)
-
Croft, Holly (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Accurate assessment of leaf functional traits is crucial for a diverse range of applications from crop phenotyping to parameterizing global climate models. Leaf reflectance spectroscopy offers a promising avenue to advance ecological and agricultural research by complementing traditional, time-consuming gas exchange measurements. However, the development of robust hyperspectral models for predicting leaf photosynthetic capacity and associated traits from reflectance data has been hindered by limited data availability across species and environments. Here we introduce the Global Spectra-Trait Initiative (GSTI), a collaborative repository of paired leaf hyperspectral and gas exchange measurements from diverse ecosystems. The GSTI repository currently encompasses over 7500 observations from 397 species and 41 sites gathered from 36 published and unpublished studies, thereby offering a key resource for developing and validating hyperspectral models of leaf photosynthetic capacity. The GSTI database is developed on GitHub (https://github.com/plantphys/gsti, last access: 4 January 2026) and published to ESS-DIVE https://doi.org/10.15485/2530733, Lamour et al., 2025). It includes gas exchange data, derived photosynthetic parameters, and key leaf traits often associated with traditional gas exchange measurements such as leaf mass per area and leaf elemental composition. By providing a standardized repository for data sharing and analysis, we present a critical step towards creating hyperspectral models for predicting photosynthetic traits and associated leaf traits for terrestrial plants.more » « lessFree, publicly-accessible full text available January 9, 2027
-
Posch, Bradley C.; Zhai, Deping; Coast, Onoriode; Scafaro, Andrew P.; Bramley, Helen; Reich, PeterB; Ruan, Yong-Ling; Trethowan, Richard; Way, Danielle A.; Atkin, OwenK; et al (, Journal of Experimental Botany)Abstract Warming nights are correlated with declining wheat growth and yield. As a key determinant of plant biomass, respiration consumes O2 as it produces ATP and releases CO2 and is typically reduced under warming to maintain metabolic efficiency. We compared the response of respiratory O2 and CO2 flux to multiple night and day warming treatments in wheat leaves and roots, using one commercial (Mace) and one breeding cultivar grown in controlled environments. We also examined the effect of night warming and a day heatwave on the capacity of the ATP-uncoupled alternative oxidase (AOX) pathway. Under warm nights, plant biomass fell, respiratory CO2 release measured at a common temperature was unchanged (indicating higher rates of CO2 release at prevailing growth temperature), respiratory O2 consumption at a common temperature declined, and AOX pathway capacity increased. The uncoupling of CO2 and O2 exchange and enhanced AOX pathway capacity suggest a reduction in plant energy demand under warm nights (lower O2 consumption), alongside higher rates of CO2 release under prevailing growth temperature (due to a lack of down-regulation of respiratory CO2 release). Less efficient ATP synthesis, teamed with sustained CO2 flux, could thus be driving observed biomass declines under warm nights.more » « less
An official website of the United States government
